Photosystem II peripheral accessory chlorophyll mutants in Chlamydomonas reinhardtii. Biochemical characterization and sensitivity to photo-inhibition.
نویسندگان
چکیده
In addition to the four chlorophylls (Chls) involved in primary charge separation, the photosystem II (PSII) reaction center polypeptides, D1 and D2, coordinate a pair of symmetry-related, peripheral accessory Chls. These Chls are axially coordinated by the D1-H118 and D2-H117 residues and are in close association with the proximal Chl antennae proteins, CP43 and CP47. To gain insight into the function(s) of each of the peripheral Chls, we generated site-specific mutations of the amino acid residues that coordinate these Chls and characterized their energy and electron transfer properties. Our results demonstrate that D1-H118 and D2-H117 mutants differ with respect to: (a) their relative numbers of functional PSII complexes, (b) their relative ability to stabilize charge-separated states, (c) light-harvesting efficiency, and (d) their sensitivity to photo-inhibition. The D2-H117N and D2-H117Q mutants had reduced levels of functional PSII complexes and oxygen evolution capacity as well as reduced light-harvesting efficiencies relative to wild-type cells. In contrast, the D1-H118Q mutant was capable of near wild-type rates of oxygen evolution at saturating light intensities. The D1-H118Q mutant also was substantially more resistant to photo-inhibition than wild type. This reduced sensitivity to photo-inhibition is presumably associated with a reduced light-harvesting efficiency in this mutant. Finally, it is noted that the PSII peripheral accessory Chls have similarities to a to a pair of Chls also present in the PSI reaction center complex.
منابع مشابه
Fluorescence Decay Kinetics of Wild Type and D2-H117N Mutant Photosystem II Reaction Centers Isolated from Chlamydomonas reinhardtii
We compare the chlorophyll fluorescence decay kinetics of the wild type and the D2-H117N mutant photosystem II reaction centers isolated from Chlamydomonas reinhardtii. The histidine residue located at site 117 on the D2 polypeptide of photosystem II is a proposed binding site for one of two peripheral accessory chlorophylls located in the reaction center complex. The peripheral accessory chlor...
متن کاملPossible role for molecular chaperones in assembly and repair of photosystem II.
Genes of the HSP70 chaperone family are induced by light. In Chlamydomonas reinhardtii, the induction of HSP70 (70 kDa heat shock protein) chaperones by light results in a partial protection of photosystem II against damage by photoinhibitory conditions. Underexpression of a chloroplast-localized HSP70 protein caused an increased sensitivity of photosystem II to light. Overexpression of this pr...
متن کاملPosttranslational events leading to the assembly of photosystem II protein complex: a study using photosynthesis mutants from Chlamydomonas reinhardtii
We studied the assembly of photosystem II (PSII) in several mutants from Chlamydomonas reinhardtii which were unable to synthesize either one PSII core subunit (P6 [43 kD], D1, or D2) or one oxygen-evolving enhancer (OEE1 or OEE2) subunit. Synthesis of the PSII subunits was analyzed on electrophoretograms of cells pulse labeled with [14C]acetate. Their accumulation in thylakoid membranes was st...
متن کاملAntenna structure and excitation dynamics in photosystem I. II. Studies with mutants of Chlamydomonas reinhardtii lacking photosystem II.
Using time-resolved single photon counting, fluorescence decay in photosystem I (PS I) was analyzed in mutant strains of Chlamydomonas reinhardtii that lack photosystem II. Two strains are compared: one with a wild-type PS I core antenna (120 chlorophyll a/P700) and a second showing an apparent reduction in core antenna size (60 chlorophyll a/P700). These data were calculated from the lifetimes...
متن کاملChlorophyll fluorescence lifetime studies of greening in yellow mutants of Chlamydomonas reinhardtii: assembly of the Photosystem I core complex
Changes in the functional organization of chlorophyll occur during light-dependent chlorophyll accumulation in yellow mutants of Chlamydomonas reinhardti£ These changes were studied using single-photon counting techniques to determine the chlorophyll fluorescence decay kinetics at various times after transfer of de-greened cultures to the light. Several different yellow mutants were analyzed: y...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 127 2 شماره
صفحات -
تاریخ انتشار 2001